1 Sheaf Spaces

Proposition 1.1. Let X be a topological space, F a sheaf on X, U C X open, s,s' € F(U).
The following holds:
s=§ < s, =8, Ve eU

Proof. ,, = “ is clear.
, <= ‘“ By definition of direct limit, we have s, = s, <= 3U, C U with p§ (s) = p§J (s').
Apply the monopresheaf condition on U = U,y U, to see s = §'. O

Remark 1.2. 1.1 in general doesn’t hold for presheaves. Consider for example X = {0,1}, F(X) =
{a,b}, F(U) = {0}, for U # X, with p constant, except p¥. For a sheaf however, this allows us
to think of a sheaf as a collection of functions with values in its stalks.

Definition 1.3. Let X be a topological space. A sheaf space over X is a pair (F, p) consisting
of a topological space E and a local homeomorphism p : £ — X. (This also forces p to be
continuous.)

A morphism of sheaf spaces f : (E,p) — (E',p') is a continuous map f : E — E' s.t.p=p'of.

Construction 1.4. Let F be a sheaf space. We will construct a sheaf of sets I'E in a natural
way, i.e. in such a way, that a morphism f : £ — E’ of sheaf spaces gives rise to a morphism
I'f:TE — I'E' of sheaves.

For U C X open, we set

I'U,E):={0:U — E cont.|pooc =idy}

A restriction maps, we use the usual restriction maps. Then one may show, that the map
I'E:Uw— I'(U, E) defines a sheaf.
Now let f: ' — E’ be a morphism of sheaf spaces. We have the map

I'UE)—T(UE), o~ foo
and since p = p’ o f, this is well-defined and gives us a morphism of sheaves I'f : I'E — I'E'.
Lemma 1.5. Let (E,p) be a sheaf space over X. Then:
a) p is an open map.

b) For U C X open, o0 € I'(U,E), o(U) is open in E. Furthermore sets of this form give a
basis for the topology of E.

c) Let (E',p") be another sheaf space, ¢ : E — E' s.t. p =p' o, p,p local homeomorphisms.
Then the following holds:

@ cont. <= p open <= ¢ local homeom.

Proof. a) Let W C E be open and x € p(W). Pick an e € W N p~!(x). Then, by the definition
of a sheaf space, there exists an open neighbourhood W’ C W of e, with p(W) D p(W’) 5 z
open in X.



b)

Let e € o(U). Then there exists an open neighbourhood W C FE, s.t. p|y is a homeo-
morphism onto an open set V' C X. Then p|ly maps W N o(U) bijectively onto U NV
(poo = idy), which is open in X. Therefore W No(U) is an open neighbourhood of e inside
a(U).

Let W C E be open. Then p(W) is open in X by a). Let y € W. Then there exist N > y,
U 3> p(y) open, s.t. p|y : N — U is a homeomorphism. Take the inverse o0 : U — N — E and
restrict it to UNp(W). Then o € T(UNp(W), E) and o(UNp(W)) is an open neighbourhood
of y contained in W.

Local homeomorphisms are always continuous and therefore also open by a).

,p cont. = ¢ local homeom.“: Let y € FE. Since p’ is a local homeomorphism, there
exist open N’ C E'\V C X p/|yo : N' — V is a homeomorphism and ¢(y) € N’. Also,
o Y(N") is open in E. We therefore find an open N C ¢ }(N') containing y, which p maps
homeomorphically onto an open U C V. Set N” = p~}(U) N N’ to obtain the following
commuative diagram

N el N

lplzv ,
P’

U

with N, N” U open and p|y,p’|n» homeomorphisms. Therefore ¢|y is also a homeomor-
phism.

,p open =—> ¢ local homeom.“: Let y € E. Then there exist an open neighbourhood N
of y and an open U C X, s.t. p|y : N — U is a homeomorphism. Also ¢(N) is open, so
there exist an open neighbourhood N’ of ¢(y) and V' C U open, s.t. p/|yv : N — V is a
homeomorphism. Set N” = p~}(V) N N to obtain the homeomorphism p|y» : N” — V and
the commuative diagram

N” SOIN” N/
P\N”
[,
\%4

As before, we conclude, that ¢|y~ is a homeomorphism.

Proposition 1.6. Let (E,p) be a sheaf space an x € X. There exists a natural bijection

0o (TE), — p '(z)

and p~Y(z) has the discrete topology as a subspace of E.

Proof. For an open neighbourhood U of z, consider the map

ov (U E) = p Y(z), o o(z).

These maps are compatible with restrictions and by universal property of the direct limit give
rise to a map ¢, : (TE), — p~ ().

Surjectivity: Let e € p~!(x). Since p is a local homeomorphism, e has an open neighbourhood
W C E, s.t. plw : W — U is a homeomorphism for an open U C X. Consider ¢ := (p|w)™' €



I'(U, E). Then ¢,(0,) = e.

Injectivity: Let s € I'(U, E),t € ['(V, E) agree at x. By Lemma 1.5 W := s(U) N t(V) is open
in E and s,t agree on p[WW] since both are inverses of p|w (s(p(s(u))) = s(u)). Also p(W) is
open by Lemma 1.5, 50 p 1 (5) = pyyy(t) € D(p(W), E), which shows the injectivity.

For e € p~!(x) and W as in the proof of surjectivity, we have W Np~!(z) = {e}. O

Remark 1.7. One easily verifies the following:
a) T is functorial: T'(f o g) = T'(f) o T'(g), I'(id) = id.

b) f : E — E’ a morphism of sheaf spaces. Then the maps (I'f), : (I'E), — (I'E’), and
flo-1z) 1 p~(x) — p'~*(x) are isomorphic.

Construction 1.8. Let F' be a presheaf on X. We will construct a sheaf space LF' in a natural
way, i.e. in such a way, that a morphism f : F' — F’ of presheaves gives rise to a morphism
Lf: LF — LF’ of sheaf spaces.

Set LF := [[,cx I (disjoint union of the stalks of F') with p : LF' — X the natural projection

map (p~t(z) = F,).
We give LF the following topology: For U C X open and s € F(U), we define the map
s:U—LF, v+—s,e€F, CLF

and declare sets of the form §(U) = {s, € LF|z € U} to be open sets. Then Uy x openis(U)s €
F(U)} forms a basis for the topology it generates:

Let e € 3(U)NE(V) for s € F(U),t € F(V). Then e = s, = t, for an x € X and there therefore
exists an open W C UNV s.t. p%(s) = pY(t), which means, that e has a basis neighbourhood

piy () (W) = pyy, ()(W) C 3(U) NE(V).
Furthermore p is continuous with respect to this topology on LF, since for U C X open we

have
pH(U) = U s,

VCU open, seF(V)

Also, p is a local homeomorphism, since on §(U) it has the continuous inverse s.

Now let f: ' — F’ be a morphism of presheaves. Then f gives rise to stalk maps f, : F, — F
and thus to a map Lf : LF — LF" st. p = p' o Lf. Also, LF is open, since Lf(§(U)) =
f(U)(s)(U). So LF is continuous by Lemma 1.5.

Remark 1.9. One easily verifies, that L is functorial: L(f o g) = Lf o Lg, L(id) = id.

The question arises, what happens when we apply L and I' in succession. In the first case,
not much does happen:

Theorem 1.10. Let E be a sheaf space over X. Then (LT'E,p") = (E,p).

Proof. Let x € X. By Proposition 1.6 the fibre p~'(x) stands in bijection to the stalk (T'E),,
which is p'~}(z) C LT'E, by Construction 1.8. By fitting these bijections together for varying
x € X, we obtain a bijection ¢ : E — LI'E s.t. the following diagram commutes:

E—2 L ITE

X



Let U C X be open and o € I'(U, E). Then p(c(U)) = &(U), since for z € U we have
¢(o(x)) = o, (recall the construction of the bijection in Proposition 1.6). Therefore ¢ is open
and by Lemma 1.5 also continuous. O]

2 The sheafification of a presheaf

Given a presheaf F' over X we can first apply L and then I' to obtain a sheaf I'LF, called the
sheafification of F. This comes with a morphism of presheaves np : FF — I'LF: For U C X
open we define

np(U): F(U) = (U, LF), s+ S.
This construction satisfies the following universal property:

Theorem 2.1 (Universal property of T'L). Let F' be a presheaf and G a sheaf over X. Then
every morphism of presheaves f : F — G factors uniquely through U'LF, i.e. there exists a
unique sheaf morphism g : 'LF — G, s.t. the following diagram commutes:

F—7*1 qa

N7

This theorem shows that I'LF is ,the best “ sheaf we can make out of F'. For the proof we
will need two further lemmata:

Lemma 2.2. Let G be a presheaf. Then G is a sheaf <= ng: G — I'LG is an isomorphism
of presheaves.

Proof. ,, <= “ is clear since I'LG is a sheaf.

» = “: We check, that each G(U) — I'(U, LG), s — § is bijective.

Injectivity is clear by Proposition 1.1.

Surjectivity: For ¢t € I'(U, LG), t(U) is open in LG by Lemma 1.5. Therefore, for each = € U,
t(r) € G, has a basic neigbourhood inside ¢(U) of the form s*(U,) for an open U, C U and
s € G(U,). (Recall Construction 1.8.) The s* satisfy the glueing condition, since for z,y €
U,V :=U,NU,, pv(s*) and pgy(sy) have the same germ everywhere ((p*(s%)). = % = t(2)
for z € V). Therefore, since G is a sheaf, there exists an s € G(U) s.t. s, = (), = t(x) for all
relU,sos=t. n

Remark 2.3. np : FF — I'LF is natural in the sense, that if f : FF — F’ is a morphism of
presheaves, the following diagram commutes:

F- s TLF
b, b
L DLF

Lemma 2.4. Let F be a presheaf on X. The maps ng, : F, — (ULF), induced on the stalks
by ng are isomorphisms.



Proof. We have the following diagramm:

F(U) —" 5 T(U,LF)

¢, and oy are the maps from Proposition 1.6. (Recall that F, = p~!(z) by Construction 1.8.)
The following identities hold: ng, o ( )e = ( )z onp,ouong = ( oy veo ( )z = pu.

It suffices to show ng, = ¢, ', since by Proposition 1.6 ¢, is an isomorphism. By universal
property of the direct limit, this is equivalent to showing ( ), o np = ¢! o ()., which again is
equivalent to showing ¢ ' o ¢y onp = ¢, o (), since (), = ¢, ' o py. This however is true,
because py onp = (). O

We are now ready to prove Theorem 2.1:

Proof. |of Theorem 2.1 | Suppose there is a sheaf morphism g : TLf — G s.t. f = gong. Then
fe=(90onp)y = gz 0Npy, SO g, = n;lx o fz since np, is an isomorphism by Lemma 2.4. This
shows the uniqueness of g.

Existence: By Remark 2.3 we have the following commutative diagram:

F-“ s TLF

b e

G 25 T'LG.

Since G is a sheaf, n¢ is an isomorphism by Lemma 2.2. We can therefore set g := ng' o 'Lf
and are finished. O]

Example 2.5 (The constant sheaf). Let A be a set and X a topological space. Recall that
the constant presheaf Ay on X was given by Ax(U) = A for U C X open and pf = id, :
Ax(U) = Ax (V) for an open subset V C U.

We first apply L and obtain the sheaf space LAy = X s.t. pHz) = Ax, = Aforall z € X.
As sets we therefore have LAxy = A x X and p = .

For U C X open a € Ax(U) = A, we have:

alU)={a, e AxX|zeU}={a} xU

So by Construction 1.8 the topology on A x X has as a basis sets of the form {a} x U fora € A
and U C X open.

The topology on A x X therefore is the product-topology with A given the discrete topology.
We now consider F':=I'LAx. The sections are given by

FU)=T(ULAx)={{0:U — Ax X cont. | mpo0o =idy}

={s:U — A cont.}
={s:U — A locally constant}



The isomorphism ist trivial since my o 0 = idy means o is uniquely determined by 7 o 0.

The equality of the latter two sets can be concluded as follows:

Let z € U and s : U — A be continuous. Then s~!(s(z)) is open, contains z and s is obviously
constant on s~ !(s(x)).

If conversely s : U — A is locally constant and a € A. Then for each = € s~!(a) we can find an
open neighourbood Ux C U of x with s(Ux) = a.

Now if U is disconnected and A has > 1 element, we have that n4, is no isomorphism, so
Ax was not originally a sheaf by Lemma 2.2.

Definition 2.6. The constant sheaf over X modelled on A is the sheaf whose sheaf space is
Ax X ™ A (A given the discrete topology) and is also denoted by Ay.

Remark 2.7. We can use the concept of sheaf spaces to better understand sheaves of abelian
groups by studying their sheaf space. In particular, if F' is a sheaf of abelian groups, then the
corresponding sheaf space (LF, p) has the property, that each fibre p~!(z) has the structure of
an abelian group. And since p is continuous, these groups vary continuously in some sense, for
varying .
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