
1 Sheaf Spaces
Proposition 1.1. Let X be a topological space, F a sheaf on X, U ⊂ X open, s, s′ ∈ F (U).
The following holds:

s = s′ ⇐⇒ sx = s′x ∀x ∈ U

Proof. „ =⇒ “ is clear.
„ ⇐= “: By definition of direct limit, we have sx = s′x ⇐⇒ ∃Ux ⊂ U with ρUUx

(s) = ρUUx
(s′).

Apply the monopresheaf condition on U = ∪x∈UUx to see s = s′.

Remark 1.2. 1.1 in general doesn’t hold for presheaves. Consider for exampleX = {0, 1}, F (X) =
{a, b}, F (U) = {0}, for U 6= X, with ρ constant, except ρXX . For a sheaf however, this allows us
to think of a sheaf as a collection of functions with values in its stalks.

Definition 1.3. Let X be a topological space. A sheaf space over X is a pair (E, p) consisting
of a topological space E and a local homeomorphism p : E → X. (This also forces p to be
continuous.)
A morphism of sheaf spaces f : (E, p)→ (E ′, p′) is a continuous map f : E → E ′, s.t. p = p′ ◦f .

Construction 1.4. Let E be a sheaf space. We will construct a sheaf of sets ΓE in a natural
way, i.e. in such a way, that a morphism f : E → E ′ of sheaf spaces gives rise to a morphism
Γf : ΓE → ΓE ′ of sheaves.
For U ⊂ X open, we set

Γ(U,E) := {σ : U → E cont.|p ◦ σ = idU}

A restriction maps, we use the usual restriction maps. Then one may show, that the map
ΓE : U 7→ Γ(U,E) defines a sheaf.
Now let f : E → E ′ be a morphism of sheaf spaces. We have the map

Γ(U,E)→ Γ(U,E ′), σ 7→ f ◦ σ

and since p = p′ ◦ f , this is well-defined and gives us a morphism of sheaves Γf : ΓE → ΓE ′.

Lemma 1.5. Let (E, p) be a sheaf space over X. Then:

a) p is an open map.

b) For U ⊂ X open, σ ∈ Γ(U,E), σ(U) is open in E. Furthermore sets of this form give a
basis for the topology of E.

c) Let (E ′, p′) be another sheaf space, ϕ : E → E ′ s.t. p = p′ ◦ ϕ, p, p′ local homeomorphisms.
Then the following holds:

ϕ cont. ⇐⇒ ϕ open ⇐⇒ ϕ local homeom.

Proof. a) Let W ⊂ E be open and x ∈ p(W ). Pick an e ∈ W ∩ p−1(x). Then, by the definition
of a sheaf space, there exists an open neighbourhood W ′ ⊂ W of e, with p(W ) ⊃ p(W ′) 3 x
open in X.
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b) Let e ∈ σ(U). Then there exists an open neighbourhood W ⊂ E, s.t. p|W is a homeo-
morphism onto an open set V ⊂ X. Then p|W maps W ∩ σ(U) bijectively onto U ∩ V
(p ◦σ = idU), which is open in X. Therefore W ∩σ(U) is an open neighbourhood of e inside
σ(U).
Let W ⊂ E be open. Then p(W ) is open in X by a). Let y ∈ W . Then there exist N 3 y,
U 3 p(y) open, s.t. p|N : N → U is a homeomorphism. Take the inverse σ : U → N ↪→ E and
restrict it to U∩p(W ). Then σ ∈ Γ(U∩p(W ), E) and σ(U∩p(W )) is an open neighbourhood
of y contained in W .

c) Local homeomorphisms are always continuous and therefore also open by a).
„ϕ cont. =⇒ ϕ local homeom.“: Let y ∈ E. Since p′ is a local homeomorphism, there
exist open N ′ ⊂ E ′, V ⊂ X p′|N ′ : N ′ → V is a homeomorphism and ϕ(y) ∈ N ′. Also,
ϕ−1(N ′) is open in E. We therefore find an open N ⊂ ϕ−1(N ′) containing y, which p maps
homeomorphically onto an open U ⊂ V . Set N ′′ = p′−1(U) ∩ N ′ to obtain the following
commuative diagram

N N ′′

U

ϕ|N

p|N
p′|N′′

with N,N ′′, U open and p|N , p′|N ′′ homeomorphisms. Therefore ϕ|N is also a homeomor-
phism.
„ϕ open =⇒ ϕ local homeom.“: Let y ∈ E. Then there exist an open neighbourhood N
of y and an open U ⊂ X, s.t. p|N : N → U is a homeomorphism. Also ϕ(N) is open, so
there exist an open neighbourhood N ′ of ϕ(y) and V ⊂ U open, s.t. p′|N ′ : N ′ → V is a
homeomorphism. Set N ′′ = p−1(V ) ∩N to obtain the homeomorphism p|N ′′ : N ′′ → V and
the commuative diagram

N ′′ N ′

V

ϕ|N′′

p|N′′
p′|N′

As before, we conclude, that ϕ|N ′′ is a homeomorphism.

Proposition 1.6. Let (E, p) be a sheaf space an x ∈ X. There exists a natural bijection

ϕx : (ΓE)x → p−1(x)

and p−1(x) has the discrete topology as a subspace of E.

Proof. For an open neighbourhood U of x, consider the map

ϕU : Γ(U,E)→ p−1(x), σ 7→ σ(x).

These maps are compatible with restrictions and by universal property of the direct limit give
rise to a map ϕx : (ΓE)x → p−1(x).
Surjectivity: Let e ∈ p−1(x). Since p is a local homeomorphism, e has an open neighbourhood
W ⊂ E, s.t. p|W : W → U is a homeomorphism for an open U ⊂ X. Consider σ := (p|W )−1 ∈
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Γ(U,E). Then ϕx(σx) = e.
Injectivity: Let s ∈ Γ(U,E), t ∈ Γ(V,E) agree at x. By Lemma 1.5 W := s(U) ∩ t(V ) is open
in E and s, t agree on p[W ] since both are inverses of p|W (s(p(s(u))) = s(u)). Also p(W ) is
open by Lemma 1.5, so ρUp(W )(s) = ρVp(W )(t) ∈ Γ(p(W ), E), which shows the injectivity.
For e ∈ p−1(x) and W as in the proof of surjectivity, we have W ∩ p−1(x) = {e}.

Remark 1.7. One easily verifies the following:

a) Γ is functorial: Γ(f ◦ g) = Γ(f) ◦ Γ(g),Γ(id) = id.

b) f : E → E ′ a morphism of sheaf spaces. Then the maps (Γf)x : (ΓE)x → (ΓE ′)x and
f |p−1(x) : p−1(x)→ p′−1(x) are isomorphic.

Construction 1.8. Let F be a presheaf on X. We will construct a sheaf space LF in a natural
way, i.e. in such a way, that a morphism f : F → F ′ of presheaves gives rise to a morphism
Lf : LF → LF ′ of sheaf spaces.
Set LF :=

∐
x∈X Fx (disjoint union of the stalks of F ) with p : LF → X the natural projection

map (p−1(x) = Fx).
We give LF the following topology: For U ⊂ X open and s ∈ F (U), we define the map

ŝ : U → LF, x 7→ sx ∈ Fx ⊂ LF

and declare sets of the form ŝ(U) = {sx ∈ LF |x ∈ U} to be open sets. Then
⋃
U⊂X open{ŝ(U)|s ∈

F (U)} forms a basis for the topology it generates:
Let e ∈ ŝ(U)∩ t̂(V ) for s ∈ F (U), t ∈ F (V ). Then e = sx = tx for an x ∈ X and there therefore
exists an open W ⊂ U ∩ V s.t. ρUW (s) = ρVW (t), which means, that e has a basis neighbourhood
ρ̂UW (s)(W ) = ρ̂VW (t)(W ) ⊂ ŝ(U) ∩ t̂(V ).
Furthermore p is continuous with respect to this topology on LF , since for U ⊂ X open we
have

p−1(U) =
⋃

V⊂U open, s∈F (V )

ŝ(V ).

Also, p is a local homeomorphism, since on ŝ(U) it has the continuous inverse ŝ.
Now let f : F → F ′ be a morphism of presheaves. Then f gives rise to stalk maps fx : Fx → F ′x
and thus to a map Lf : LF → LF ′ s.t. p = p′ ◦ Lf . Also, LF is open, since Lf(ŝ(U)) =
̂f(U)(s)(U). So LF is continuous by Lemma 1.5.

Remark 1.9. One easily verifies, that L is functorial: L(f ◦ g) = Lf ◦ Lg, L(id) = id.

The question arises, what happens when we apply L and Γ in succession. In the first case,
not much does happen:

Theorem 1.10. Let E be a sheaf space over X. Then (LΓE, p′) ∼= (E, p).

Proof. Let x ∈ X. By Proposition 1.6 the fibre p−1(x) stands in bijection to the stalk (ΓE)x,
which is p′−1(x) ⊂ LΓE, by Construction 1.8. By fitting these bijections together for varying
x ∈ X, we obtain a bijection ϕ : E → LΓE s.t. the following diagram commutes:

E LΓE

X

ϕ

p

p′
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Let U ⊂ X be open and σ ∈ Γ(U,E). Then ϕ(σ(U)) = σ̂(U), since for x ∈ U we have
ϕ(σ(x)) = σx (recall the construction of the bijection in Proposition 1.6). Therefore ϕ is open
and by Lemma 1.5 also continuous.

2 The sheafification of a presheaf
Given a presheaf F over X we can first apply L and then Γ to obtain a sheaf ΓLF , called the
sheafification of F . This comes with a morphism of presheaves nF : F → ΓLF : For U ⊂ X
open we define

nF (U) : F (U)→ Γ(U,LF ), s 7→ ŝ.

This construction satisfies the following universal property:

Theorem 2.1 (Universal property of ΓL). Let F be a presheaf and G a sheaf over X. Then
every morphism of presheaves f : F → G factors uniquely through ΓLF , i.e. there exists a
unique sheaf morphism g : ΓLF → G, s.t. the following diagram commutes:

F G

ΓLF

f

nF g

This theorem shows that ΓLF is „the best “ sheaf we can make out of F . For the proof we
will need two further lemmata:

Lemma 2.2. Let G be a presheaf. Then G is a sheaf ⇐⇒ nG : G→ ΓLG is an isomorphism
of presheaves.

Proof. „ ⇐= “ is clear since ΓLG is a sheaf.
„ =⇒ “: We check, that each G(U)→ Γ(U,LG), s 7→ ŝ is bijective.
Injectivity is clear by Proposition 1.1.
Surjectivity: For t ∈ Γ(U,LG), t(U) is open in LG by Lemma 1.5. Therefore, for each x ∈ U ,
t(x) ∈ Gx has a basic neigbourhood inside t(U) of the form ŝx(Ux) for an open Ux ⊂ U and
s ∈ G(Ux). (Recall Construction 1.8.) The sx satisfy the glueing condition, since for x, y ∈
U, V := Ux ∩ Uy, ρUx

V (sx) and ρUy

V (sy) have the same germ everywhere ((ρUx
V (sx))z = sxz = t(z)

for z ∈ V ). Therefore, since G is a sheaf, there exists an s ∈ G(U) s.t. sx = (sx)x = t(x) for all
x ∈ U , so ŝ = t.

Remark 2.3. nF : F → ΓLF is natural in the sense, that if f : F → F ′ is a morphism of
presheaves, the following diagram commutes:

F ΓLF

F ′ ΓLF ′

f

nF

ΓLf

nF ′

Lemma 2.4. Let F be a presheaf on X. The maps nF,x : Fx → (ΓLF )x induced on the stalks
by nF are isomorphisms.
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Proof. We have the following diagramm:

F (U) Γ(U,LF )

Fx (ΓLF )x

nF

( )x
ϕU

( )x

nF,x

ϕx

ϕx and ϕU are the maps from Proposition 1.6. (Recall that Fx = p−1(x) by Construction 1.8.)
The following identities hold: nF,x ◦ ( )x = ( )x ◦ nF , ϕU ◦ nF = ( )x, ϕx ◦ ( )x = ϕU .
It suffices to show nF,x = ϕ−1

x , since by Proposition 1.6 ϕx is an isomorphism. By universal
property of the direct limit, this is equivalent to showing ( )x ◦ nF = ϕ−1

x ◦ ( )x, which again is
equivalent to showing ϕ−1

x ◦ ϕU ◦ nF = ϕ−1
x ◦ ( )x since ( )x = ϕ−1

x ◦ ϕU . This however is true,
because ϕU ◦ nF = ( )x.

We are now ready to prove Theorem 2.1:

Proof. [of Theorem 2.1 ] Suppose there is a sheaf morphism g : ΓLf → G s.t. f = g ◦nF . Then
fx = (g ◦ nF )x = gx ◦ nF,x, so gx = n−1

F,x ◦ fx since nF,x is an isomorphism by Lemma 2.4. This
shows the uniqueness of g.
Existence: By Remark 2.3 we have the following commutative diagram:

F ΓLF

G ΓLG.

f

nF

ΓLf

nG

Since G is a sheaf, nG is an isomorphism by Lemma 2.2. We can therefore set g := n−1
G ◦ ΓLf

and are finished.

Example 2.5 (The constant sheaf). Let A be a set and X a topological space. Recall that
the constant presheaf AX on X was given by AX(U) = A for U ⊆ X open and ρUV = idA :
AX(U)→ AX(V ) for an open subset V ⊆ U .
We first apply L and obtain the sheaf space LAX

p−→ X s.t. p−1(x) = AXx = A for all x ∈ X.
As sets we therefore have LAX = A×X and p = π2.
For U ⊂ X open a ∈ AX(U) = A, we have:

â(U) = {ax ∈ A×X| x ∈ U} = {a} × U

So by Construction 1.8 the topology on A×X has as a basis sets of the form {a}×U for a ∈ A
and U ⊂ X open.
The topology on A×X therefore is the product-topology with A given the discrete topology.
We now consider F := ΓLAX . The sections are given by

F (U) = Γ(U,LAX) = {σ : U → A×X cont. | π2 ◦ σ = idU}

∼= {s : U → A cont.}

= {s : U → A locally constant}
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The isomorphism ist trivial since π2 ◦ σ = idU means σ is uniquely determined by π1 ◦ σ.
The equality of the latter two sets can be concluded as follows:
Let x ∈ U and s : U → A be continuous. Then s−1(s(x)) is open, contains x and s is obviously
constant on s−1(s(x)).
If conversely s : U → A is locally constant and a ∈ A. Then for each x ∈ s−1(a) we can find an
open neighourbood UX ⊆ U of x with s(UX) = a.

Now if U is disconnected and A has > 1 element, we have that nAX
is no isomorphism, so

AX was not originally a sheaf by Lemma 2.2.

Definition 2.6. The constant sheaf over X modelled on A is the sheaf whose sheaf space is
A×X π2−→ A (A given the discrete topology) and is also denoted by AX .

Remark 2.7. We can use the concept of sheaf spaces to better understand sheaves of abelian
groups by studying their sheaf space. In particular, if F is a sheaf of abelian groups, then the
corresponding sheaf space (LF, p) has the property, that each fibre p−1(x) has the structure of
an abelian group. And since p is continuous, these groups vary continuously in some sense, for
varying x.
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